صفحه اصلی پرسش و پاسخ پشتیبانی تماس با ما
صفحه نخست  » پروژه  »  دانلود مقاله آزمایشگاه مکانیک سیالات

دانلود مقاله آزمایشگاه مکانیک سیالات

خرید مقاله مکانیک سیالات دانلود مقاله آزمایشگاه مکانیک سیالات مقاله تحقیق مقاله مقاله تخصصی مکانیک سیالات مقاله مهندسی مکانیک سیالات مقاله کارشناسی مکانیک سیالات مقاله تخصصی مهندسی مکانیک سیالات مقاله درس مکانیک سیالات مقاله دانشجویی مکانیک سیالات مقاله برای رشته مکانیک سیالات

Fluid Mechanics

 

آزمایشگاه مکانیک سیالات
فهرست مطالب دیدکلی ۸
روشهای مطالعه کروژن ۸
تجزیه کروژن ۸
تغییرشکل کروژنهای مدفون در اثر افزایش حرارت ۸
تاثیر فشار بر ساختمان کروژنها ۹
دیاژنز کروژن ۹
محاسبه مچوریتی ۹
انواع کروژن ۱۰
مراحل تشکیل کروژن ۱۰
مرحله دیاژنز ۱۰
مرحله کاتاژنز ۱۱
مرحله متاژنز ۱۱
مواد آلی تشکیل دهنده شیلهای نفتی ۱۲
نوع کروژن در شیلهای نفتی ۱۲
محیطهای رسوبی شیلهای نفتی ۱۲
اهمیت شیل های نفتی از نظر اقتصادی ۱۳
علائم و شواهد مهاجرت هیدروکربورها ۱۳
مهاجرت اولیه نفت ۱۴
مهاجرت ثانویه نفت ۱۴
ویژگیهای زمین شناسی در مهاجرت و تمرکز هیدروکربورها ۱۵
نقش سطح تماس آب و نفت در مهاجرت نفت ۱۶
زمین شناسی نفت ۱۶
عکسبرداری هوایی ۱۷
نقشه برداری عملی ۱۷
نقشه کشی ۱۷
آزمایش روی نمونه های سطحی ۱۷
رسم نقشه زمین شناسی ۱۸
نقشه ساختمانی زیرزمینی ۱۸
تهیه مقاطع بزرگ ۳۰
جمع ۴۰
قسمتهای عمده یک نفتگیر ۴۴
نقطه ریزش ۴۴
مخزن ۴۴
پی نفتگیر ۴۴
پوش سنگ ۴۵
تعیین شکل و وضعیت مخزن ۴۵
طبقه بندی نفتگیرها ۴۵
انواع نفتگیرهای تاقدیسی یا چین خورده ۴۶
ساختمانهای گنبد سنگی ۴۶
پوش سنگ گنبدهای نمکی ۴۷
منشا گنبدهای نمکی ۴۷
تئوری منشا ولکانیگی برای گنبدهای نمکی ۴۷
نظریه نمک حاصل از آبهای زیرزمینی ۴۸
تئوری جریان مواد پلاستیکی ۴۸
تاقدیسهای متراکم شده ۴۹
شناسایی تاقدیسهای چین خورده ۴۹
نفتگیرهای حاصله از گسل خوردگی ۴۹
نقش شکستگیها و درزها در تجمع نفت ۵۰
نفت گیر کانالی ۵۱
نفت‌گیرهای سنگهای آهکی مرجانی ۵۱
قسمتهای یک توده مرجانی ۵۲
بخش عقبی ۵۲
بخش میانی ۵۲
بخش جلویی ۵۲
نفتگیرهای ماسه‌ای ۵۲
نفتگیرهای ماسه‌ای دریایی (ساحلی) ۵۳
نفتگیرهای ماسه‌های کانالهای رودخانه‌ای و مانورهای مدفون ۵۳
خواص فیزیکی نفت خام ۵۷
ویسکوزیته ۵۷
ترکیبات مولکولی نفت خام ۵۷
گروههای تشکیل دهنده نفت خام ۵۷
هیدروکربنها (Hydrocarbons) ۵۷
غیرهیدروکربنها (Heterocompounds) ۵۷
وزن مخصوص نفت خام ۵۸
سنجش وزن مخصوص نفت خام ۵۸
تاثیر درجه حرارت بر وزن مخصوص نفت خام ۵۸
انواع مختلف نفت برحسب A.P.I ۵۹
ضریب انبساط نفت خام ۵۹
ارزش حرارتی و گرمایی ویژه نفت خام ۵۹
نقطه اشتعال نفت ۵۹
نقطه سفت شدن نفت خام ۵۹
-۲۲ – صادرات نفت خام کشورهای عضو اوپک ( هزار بشکه در روز) ۶۶
مهار گازهای طبیعی ۹۰
ترکیب گازهای طبیعی ۹۰
رسیدن گازهای طبیعی به سطح زمین ۹۰
گازهای موجود در کانسارهای زغال سنگ ۹۱
تفکیک گازهای طبیعی ازنفت ۹۱
دستگاه تفکیک نفت و گاز ۹۱
منشا نفت و روند تشکیل آن نفت خام مایعی است غلیظ به رنگ سیاه یا قهوهای تیره که اساسن از هیدروکربن ها تشکیل شده است.
در مورد منشاء نفت به دو نظریهء معدنی و آلی می رسیم.
نظریهء منشاء معدنی نفت: که در سال ۱۸۸۶ توسط برتلو داده شد اینک رد شده است.
همچنین در سالهای ۱۸۸۹( مندلیوف) نظریهء برتلو را تایید کرد و پس از ان در سال۱۹۰۱ سا باتیه و ساندرنس نظریهء منشاء معدنی بودن نفت را تایید کردند
نظریهء منشاء آلی:
امروزه می توان گفت که نظریهء منشاءآلی نفت برای نفت خام سبک به هر نظریه دیگری قابل قبول تر است این نظریه به دلایل زیر متکی است:
۱- نفت خام همیشه در لایهای رسوبی یافت می شود که همواره مقدار زیادی از مواد آلی نیز در این لایها وجود دارند.
۲- نفت خام محتوی ماده ای به نام پور فیرین می باشد.این ماده فقط در عامل سرخی خون ( هِمین) حیوانات و نیز در سبزینهء گیاهان وجود دارد.
۳- اکثر نفتهای خام خاصیت چر خش سطح پلاریزاسیون نور را دارند. این خاصیت مربوط به وجود کلسترول است با منشاء حیوانی یا گیاهی.
به نظر می رسد که موجودات بسیار کوچک و بیشماری که در دریا ها و مرداب ها زندگی می کنندو پلانگتون (فیتو پلانگتون و زئوپلانگتونها) نامیده می شوند منشاء آلی نفت می باشند.
توزیع پلانکتونها در سطح دریا یکنواخت نیست.این موجودات در قسمت بالای آب دریا (عمق ۵۰ تا ۱۰۰ متری) که اشعهء خورشید نفوذ می کند و نیز در مجاورت سواحل متمرکز ند.تولید مثل این موجودات بسیار زیاد است و پس از نابودی در کف دریا سوب می دهند.البته پلانکتونها تنها منبع مواد آلی نیستند. اب رود خانه ها یی که به دریا میریزند حاوی مقداری مواد هیو میک است که ترکیبشان نزدیک به هیدرو کربنها است.
نفت خام
بسیاری از دانشمندان عقیده دارند که نفت از باقیمانده موجودات ریز و گیاهانی که صدها میلیون سال پیش در دریاها می زیسته اند به وجود آمده است. زمانی که آنان مرده اند ، بدن آنان در کف دریا ، بین رسوبات دریا محصور شده است.
بعد از میلیونها سال ، گرما و فشار آنها را به نفت و گاز تبدیل کرده است. نفت و گاز معمولاً همراه با هم در پوسته زمین یافت می شوند و برای به دست آوردن آنها نیاز به حفاری در پوسته زمین است. در نمودار زیر دوره زمانی شکل گیری نفت خام نمایش داده شده است.
موجودات و گیاهان ریز (پلاکتونها) انرژی لازم خود را از آفتاب می گرفته اند. وقتی مرده اند در ته دریا جمع گردیده اند.
سپس بین سنگها و گلهای کف دریا مدفون شده اند . عقیده بر این است که انرژی در بدن آنها ذخیره شده بوده است و سپس بدن آنها شروع به پوسیدن گذارده است.
فشار و دما در اعماق زمین باعث تبدیل شیمیایی بقایای موجودات به نفت خام و گاز شده است.
نفت خام و گاز در اعماق زمین ، بین چین خوردگیها و سنگهایی که دارای خلل و فرج است یافت می شود.
اما ترکیبات نفت خام چیست؟ نفت خام مخلوطی از هیدروکربنهای مختلف است از هیدروکربنهای سبک C1 تا هیدروکربنهای سنگین. همچنین شامل بعضی از نمکها ، فلزات و غیره می باشد. اگر هر هیدروکربن را به وسیله یک توپ با اندازه مشخص نشان دهیم ، شکل زیر بیانگر ترکیبات نفت خام است:
همانطور که در شکل مشخص است ، نفت خام مشتمل بر انواع هیدروکربن ها می باشد. به علاوه ترکیبات دیگری به رنگهای آبی و زرد نیز دیده می شود که نمکها و سایر ناخالصی ها می باشند.
مواد آلی موجود در رسوبها حاوی ۱۵-۳۰% اٌکسیژن و ۱۰-۷% هیدروژن میباشند در حالی که مواد نفتی حد اکثر ۴% اکسیژن و۱۵-۱۱% هیدروژن دارند.بنا بر این تبدیل مواد آلی به هیدرو کربن ها یک پدیده احیا است که به کمک باکتری های غیر هوازی مو جود در اعماق آبها صورت می گرد.بدین ترتیب مواد آلی طی یک رشته واکنش های فساد- تجزیه مولکولی- تراکم وپلیمری شدن به ماده هیدرو کربنی بیار غلیظ به نام کروژن تبدیل میشود.مجموعه این تغییر وتبدیلها را دگرگونی دیا ژنتیک می نامند .این دگر گونی از لایه های یک متری آغاز شده و تا اعماق هزار کیلو متری ادامه میابد و مدت ان نیز ۵ تا ۱۰ هزار سال است.
با ادامه رسوب گزاری عمق لایه ها نیز زیاد می شود و در نتیجه فشار ودما افزایش میابد.تحت چنین شرایطی t > 100 c , p >1000 atm کروژن در اثر تجزیه حرارتی به هیدرو کربن های مایع سبکتر تبدیل میگردد وبا ادامه رسوب گذاری، مقداری از این هیدرو کربنها در اثر شکست تبدیل به هیدرو کربن های سبک و گاز متان می شوند.
شکوفایی فصلی یا سالیانه جلبکهای پلانکتونیک ، غالبا به عنوان بوجود آورنده لامیناسیون ریتمیک در نظر گرفته‌ می‌شود. همانند تشکیل زغال ، شرایط هوازی برای ممانعت از اکسیداسیون مواد آلی و احیا تجزیه باکتریائی مورد نیاز است. بنابراین بیشتر شیلهای نفتی در توده‌های آبی لایه‌لایه در جایی که آبهای سطحی اکسیژن‌دار اجازه رشد پلانکتونها و آبهای احیایی کف اجازه حفظ شدن مواد آلی را می‌دهد، تشکیل می‌شوند.
دیدکلی
کروژنها مواد آلی رسوبی شکننده‌ای هستند که در حلالهای مواد آلی غیرمحلول هستند و دارای ساختمان پلمری می‌باشند. مواد آلی شکننده‌ای که در حلالهای آلی محلول باشند، بیتومن نامیده می‌شوند. ولی کروژنها را می‌توان توسط اسیدهایی مانند HCL و HF از سنگهای رسوبی باز پس گرفت. همچنین ممکن است توسط روش دانسیته و استفاده از مایعات سنگین بتوان کروژن را جد اساخت. چون کروژن نسبت به کانیهای دیگر سبک بوده و وزن مخصوص کمتری دارد.
روشهای مطالعه کروژن
تمرکز کروژن بوجود آمده را می‌توان با میکروسکوپهای با نور عبوری یا انعکاسی مورد بررسی قرار داد و هویت بیولوژیکی و منشا و نحوه بوجود آمدن اولیه آنها را مطالعه نمود. همچنین با استفاده از میکروسکوپهای با نور ماورای بنفش و مشاهده کردن رنگهای فلورسانس ، اجزا اصلی تشکیل دهنده کروژنها را مشخص ساخت و از اسپکتروسکوپهای مادون قرمز نیز جهت بررسی ترکیب شیمیایی و ساختمانی کروژنها کمک گرفت.
تجزیه کروژن
مولکولهای بزرگ و پیچیده کروژن به سختی قابل تجزیه بوده ولی در اثرحرارت دادن در اتمسفر به ذرات کوچکتری شکسته می‌شوند که بعدا آنها را می‌توان توسط دستگاههای کروماتوگرافی گازی و اسپکترومترهای جرمی تجزیه نمود.
تغییرشکل کروژنهای مدفون در اثر افزایش حرارت
تبدیل کروژنها به نفت و گاز فرایندی است که به درجه حرارت بالایی نیازمند است. برای شروع تبدیل مواد حیوانی و گیاهی آلی به هیدروکربنها درزیرفشار ۱-۲ کیلومتر رسوب ، حرارتی درحدود ۷۰-۵۰ درجه سانتیگراد لازم است. درجه حرارت نهایی برای این تبدیل که بلوغ یا مچوراسیطون نامیده می‌شود. حتی به بیش از ۱۵۰ درجه سانتیگراد می‌رسد. لازم به ذکر است که در نواحی با گرادیان زمین گرمایی بیشتر ، به عنوان مثال نواحی با جریان حرارتی بالا ، امکان دارد مواد آلی درعمق کمتری به درجه بلوغ (مچوریتی) برسند.
تاثیر فشار بر ساختمان کروژنها
با افزایش حرارت در اثر افزایش بار رسوبی فوقانی عاملهای باندی C- C مولکولهای آلی موجود در کروژن شکسته می‌شوند و گاز نیز در این مرحله تشکیل می‌شود. بنابراین با بالا رفتن حرارت همگام با افزایش فشار ، باندهای C- C بیشتری در کروژن و مولکولهای هیدروکربنی که قبلا تشکیل شده بودند، شکسته می‌شود. این شکستگی راهنمایی برای تشکیل هیدروکربنهای سبک تر ، از زنجیره‌های هیدروکربنی طویل و از کروژن است. جدا شدن متان و دیگر هیدروکربنها سبب می‌شود که کروژن باقیمانده نسبتا از کربن غنی شود. زیرا در آغاز ، کروژنهای تیپ ۱و ۲ نسبت H/C برابر ۱٫۷ و ۱٫۳ دارند.
دیاژنز کروژن
شروع دیاژنز با درجه حرارت ۷۰-۶۰ صورت می‌گیرد و ازدیاد درجه حرارت تا زمانی که نسبت H/C =0.6 و نسبت O/C =۰٫۱ باشد تا حدود ۱۵۰ درجه سانتیگراد ادامه می‌یابد. در درجه حرارتهای بیشتر تمام زنجیره‌های هیدروکربنی طویل تقریبا شکسته می‌شوند و بنابراین باقیمانده آن بطور کلی تنها از گاز متان )گازخشک( می‌باشد و ترکیب کروژن تدریجا به سمت کربن خالص میل خواهدکرد. ( H/C=0 )
محاسبه مچوریتی
محاسبه مچوریتی (به بلوغ رسیدن) سنگ مادر برای پیشگویی اینکه چه سنگهای مادری برای توید نفت بقدر کافی رسیده هستند و همچنین جهت محاسبه کامپیوتری و طرح ریزی بکار می‌رود که اینها یک قسمت مهم از آنالیز حوضه برای اکتشافات نفت می‌باشند و مهمترین بهره از این محاسبات تعیین تاریخچه فرونشینی است که از ثبت چینه شناسی و تخمین گرادیان زمین گرمایی مشتق می‌شود. بنابراین تاریخچه فرونشینی تابعی از زمان زمین شناسی می‌باشد.
انواع کروژن
بطور کلی سه نوع کروژن قابل تشخیص است. وجه تمایز این سه نوع کروژن به نوع ماده آلی تشکیل دهنده و ترکیب شیمیایی آن بستگی دارد.
کروژن نوع اول :
این نوع کروژن دارای منشا جلبکی بوده و نسبت هیدروژن به کربن موجود در آن از سایر کروژنها بیشتر می‌باشد نسبت هیدروژن به کربن حدود ۱٫۲ تا ۱٫۷ است .
 کروژن نوع دوم :
کروژن نوع دوم یا لیپتینیک‌ها نوع حد واسط کروژن محسوب می‌شود. نسبیت هیدروژن به کربن نوع دوم ، بیش از ۱ می‌باشد. قطعات سر شده جلبکی و مواد مشتق شده از فیتو پلانکتونها و زئوپلانکتونها متشکلین اصلی (کروژن ساپروپل) کروژن نوع دوم است.
 کروژن نوع سوم :
کروژن نوع سوم یا هومیک دارای نسبت هیدروژن به کربن کمتر از ۸۴ % می‌باشد. کروژن نوع سوم از لیگنیت و قطعات چوبی گیاهان که در خشکی تولید می‌شود به وجود می‌آید.
مراحل تشکیل کروژن
مواد آلی راسب شده در حوضه‌های رسوبی با گذشت زمان در لابه‌لای رسوبات دفن می‌شود. ازدیاد عمق دفن‌شدگی با افزایش فشار و دمای محیط ارتباط مستقیم دارد. تی‌سوت ( ۱۹۷۷) تحولات مواد آلی در مقابل افزایش عمق را تحت سه مرحله به شرح زیر تشریح می‌کند :
مرحله دیاژنز
تحولات مواد آلی در مرحله دیاژنز در بخشهای کم عمق‌تر زیر زمین و تحت دما و فشار متعارف انجام می‌شود. این تحولات شامل تخریب بیولوژیکی توسط باکتریها و فعل و انفعالات غیر حیاتی می‌باشد. متان ، دی‌اکسید کربن و آب از ماده آلی جدا شده و مابقی به صورت ترکیب پیچیده هیدروکربوری تحت عنوان کروژن باقی می‌ماند. در مرحله دیاژنز محتویات اکسیژن ماده آلی کاسته می‌شود ولی نسبت هیدروژن به کربن ماده‌ آلی کم و بیش بدون تغییر باقی می‌ماند.
تاثیر مرحله دیاژنز در بوجود آمدن هیدروکربنها :
در اوائل مرحله دیاژنز مقداری از مواد جامد از قبیل خرده فسیلها و یا کانیهای کوارتز و کربنات کلسیم و … ، ابتدا حل شده بعدا از آب روزنه‌ای اشباع گشته ، سپس به همراه سولفورهای آهن – سرب و روی و مس و غیره دوباره رسوب می‌کنند. در این مرحله مواد آلی نیز به سوی تعادل می‌روند. یعنی اول در اثر فعالیت باکتریها مواد آلی متلاشی شده و بعدا همزمان با سخت شدن رسوبات)سنگ شدگی (این مواد نیز پلیمریزه شده و مولکولهای بزرگتری را تشکیل داده سپس به تعادل می‌رسند که در این حالت تعادل آنها را کروژن می‌نامند.
مرحله کاتاژنز
تحولات مواد آلی در مرحله کاتاژنز در عمق بیشتر تحت دمای زیادتر صورت می‌گیرد. جدایش مواد نفتی از کروژن در مرحله کاتتاژنز به وقوع می‌پیوندد. در ابتدا نفت و سپس گاز طبیعی از کروژن مشتق می‌شود. نسبت هیدروژن به کربن ماده آلی کاهش یافته ولی در مقدار اکسیژن به کربن تغییر عمده‌ای صورت نمی‌گیرد.
تاثیر مرحله کاتاژنز در بوجود آمدن هیدروکربنها :
در این مرحله مواد آلی تغییرات زیادی پیدا می‌کنند و حین تغییر وضع مداوم مولکولی در کروژنها در ابتدا نفتهای سنگین ، بعدا نفتهای سبک و در آخر گازهای مرطوب تولید می‌شوند. در آخر مرحله کاتاژنز تقریبا تمامی شاخه‌های زنجیری هیدروکربنها از مولکول کروژن جدا شده و مواد آلی باقیمانده در مقایسه با زغال سنگها از نظر درجه بلوغ ، شبیه به آنتراسیت بوده و ضریب انعکاسی بیش از ۲% دارند.
مرحله متاژنز
تحولات ماده آلی در مرحله متاژنز تحت دما و فشار بالاتر نسبت به مراحل قبلی انجام می‌شود. بقایای هیدروکربن بخصوص متان از ماده آلی جدا می‌شود. نسبت هیدروژن به کربن کاهش یافته ، به نحوی که در نهایت کربن به صورت گرافیت باقی خواهد ماند. تخلخل و تراوایی سنگ در این مرحله به حد قابل چشم پوشی می‌رسد.
تاثیر مرحله متاژنز در بوجود آمدن هیدروکربنها :
در مرحله متاژنز و متامورنیسم رسوبات در عمق بیشتر و تحت تاثیر حرارت و فشار بیش از حد قرار دارند. در این مرحله کانیهای رسی ، آب خودشان را از دست داده و در نتیجه تبلور مجدد در بافت اصلی سنگ تغییرات بوجود می‌آید. در این مرحله کروژن باقی مانده (موادآلی باقی مانده) تبدیل به متان و کربن باقیمانده می‌شود. این مواد را می‌توان قابل قیاس با تبدیل زغال سنگ به آنتراسیت دانست که ضریب انعکاسشان تا ۴% می‌رسد. بالاخره در آخراین مرحله باقیمانده مواد آلی که به صورت کربن باقی مانده در آمده بود، تبدیل به گرافیت می‌شود.
مواد آلی تشکیل دهنده شیلهای نفتی
بیشتر مواد آلی در شیلهای نفتی ، بقایای جلبک و اسپورهای جلبکی فراوانند. بنابراین ، فرض بر این است که بیشتر مواد آلی دارای منشا جلبکی باشند. خرده‌های دانه ریز گیاهان کاملتر و مگااسپورها نیز ممکن است یک جز تشکیل دهنده مهم باشند. شکل تیپیک رسوبی در بسیاری از شیلهای نفتی وجود لامیناسیون مشخص ، در مقیاس میلیمتر ، تناوبی از لامینه‌های آواری و آلی می‌باشد..
نوع کروژن در شیلهای نفتی
کروژن در شیلهای نفتی عمدتا از نوع I است که دارای نسبت بالای H/C و نسبت پایین O/C است و عمدتا از مواد جلبکی لیپید چربیها و اسیدهای چرب سرچشمه گرفته است، تا اینکه از کربوهیدراتها ، لیگینها یا صمغها باشد. برخی از کروژنها در شیلهای نفتی ، ممکن است از نوع II باشد که از خرده‌های گیاهان آوندی تشکیل شده‌اند. برخی فلزات ، نظیر وانادیوم ، نیکل ، اورانیوم و مولیبدنیوم در شیلهای نفتی فراوانند که با کروژن مخلوط شده‌ یا اینکه به صورت کلات در کروژن هستند.
محیطهای رسوبی شیلهای نفتی
شیلهای نفتی ، در محیطهای دریاچه‌ای و دریایی رسوب کرده‌اند. شیلهای نفتی در سازند گرین ریور ائوسن حاوی دولومیت و کلسیت بیشتری بوده و به صورت لامینه‌ها یا واروهای ریتمیک هستند. اگر چه قبلا به منشا آبهای نسبتا عمیق نسبت داده می‌شد، ولیکن در حال حاضر ، تصور بر این است که رسوبگذاری در دریاچه‌های موقتی ، نسبتا کم عمق که اغلب در معرض خشک شدگی قرار گرفته‌اند، صورت گرفته باشد. سیکلهای کوچک مقیاس شیلهای نفتی که به طرف بالا به تبخیری‌ها تبدیل می‌شود منعکس کننده گسترش مداوم یک دریاچه لایه‌لایه غیرشور ، به یک دریاچه شور می‌باشد.
شیل نفتی تشکیل شده از یک گونه منفرد جلبکی در چندین افق در کربونیفر تحتانی دره میدلند در اسکاتلند دریافت می‌شود. این افق‌ها ، در دریاچه‌های آب شیرین در یک کمپلکس دلتایی که زغالهای هومیکی نیز گسترش دارند، یافت می‌شود. چون جلبکهای پلانکتونیک ، منشا اصلی مواد آلی هستند و اینها دارای یک تاریخچه زمین شناسی طولانی هستند، لذا شیلهای نفتی در کامبرین یافت می‌شوند. برای مثال ، شیل ناساج در میشیگان و وسیکانسین سنی در حدود ۱۱۰۰ میلیون سال دارد.
اهمیت شیل های نفتی از نظر اقتصادی
در حال حاضر ، توجه نسبتا زیادی به شیلهای نفتی می‌شود چون آنها یک منشا سوخت فسیلی هستند و ممکن است به جایگزینی ذخایر نفتی که انتظار اتمام آن می‌رود، کمک کند. رسوبات گسترده‌ای از شیلهای نفتی در روسیه ، چین و برزیل یافت می‌شود و رسوبات با عیار پایین که ممکن است از نظر اقتصادی باارزش شود در تعداد زیادی از کشورهای دیگر جهان یافت می‌شود. شیلهای نفتی همچنین پتانسیل سنگهای مولد نفت هستند.
علائم و شواهد مهاجرت هیدروکربورها
• مواد آلی موجود در منافذ مرتبط سنگهای سطحی زمین ، اکسید شده و فاسد می‌شود. بنابراین ، لازمه حفظ مواد نفتی در مخزن به دنبال افزایش عمق و ازدیاد دمای مخزن می‌باشد.
• بخش بسیار کوچکی از مواد ارگانیکی سنگهای منشا به نفت و گاز تبدیل می‌شود. مقدار نفت به صورت جازا بسیار ناچیز است. به همین دلیل تشکیل مخزن دارای ذخیره قابل ملاحظه هیدروکربور در سنگ منشا غیر ممکن به نظر می رسد.
• نفت و گاز بطور کلی همراه آب در منافذ سنگ مخزن تجمع می‌یابد. به همین دلیل ، وجود نفت و گاز در منافذ و شکستگیها همزمان با دفن شدگی مخزن در صورت گرفته است.
• نفت و گاز در بالاترین نقطه مخزن تجمع و تمرکز یافته که خود تاثیری بر حرکت نفت به سمت بالا و یا در جهات عرضی می‌باشد.
• نفت و گاز و آب بر اساس وزن مخصوص نسبت به یکدیگر در مخزن قرار می‌گیرد. نحوه قرار گرفتن گاز ، نفت و آب حاکی از حرکت آنها در داخل مخزن است.
__
مهاجرت اولیه نفت
منظور از مهاجرت اولیه ، جز بیش مواد هیدر و کربنی از سنگ منشا بصورت محلول در آب ، ملکول آزاد ، جذب در مواد ارگانیکی یا غیر ارگانیکی و یا تلفیقی از آنها می‌باشد. هیدروکربورها ضمن انتقال اولیه بایستی از سنگ منشا ، آزاد شده تا بتوانند حرکت کنند. به هرحال ، جدایش مواد ارگانیکی قابل حل از سنگ منشا ، مکانیسم اصلی انتقال اولیه را بوجود می‌آورد. مقدار از این تولید در واحد حجم بسیار کم است. دما و فشار با ازدیاد عمق و دفن سنگها افزایش پیدا می‌کند.
این عمل سبب کاهش مقدار غلظت سنگهای قابل انعطاف شده و به نحوی که در نهایت منجر به خروج مقدار زیادی از مایع درون خلل سنگ می‌شود. سنگهای دانه ریز مانند رسها بیشترین فشار را متحمل می‌شود. مایع محتوی این سنگهای تحت فشار به طرف بالا صعود می‌کند. به همین دلیل افزایش فشار می‌توانند سر آغاز حرکت صعودی سیالات محسوب شود. مطالعه‌ای که بر قابلیت انحلال پذیری هیدروکربورها در آب سازند صورت گرفته حاکی از کاهش قابلیت انحلال قابلیت انحلال هیدروکربورها ضمن افزایش اندازه ملکولی آن می‌باشد. افزایش دما قابلیت حل هیدروکربور در آب را افزایش می‌دهد.
قابلیت انحلال هیدروکربورهای سنگینتر با کاهش دما کم می‌شود. بنابراین هیدروکربورها بر اثر کاهش دما به تدریج از محلول اشباع شده خارج می‌شود. این رهایی در هر سنگی که دمایی کمتر از دمای قبلی خود داشته باشد می‌تواند صورت گیرد. نتیجه آزاد شدن هیدروکربور ، راه یابی آن به مسیر اصلی جریان است. آزاد سازی نفت ، ناشی در کاهش دما ، در هر حال ، تنها مقدار کمی نفت از سنگهای ضخیم لایه ، می‌تواند از آب عبور جدا شود.
مهاجرت ثانویه نفت
تمرکز مواد آلی و هیدروکربورها و یا واحد حجم سنگ بسیار محدود است و حرکت آن مواد نسبت به سنگ مخزن نیز به آهستگی صورت می‌گیرد. مولکولهای هیدروکربور آزاد شده و یا بخشهای کوچک نفتی در حال ورود به سنگ مخزن اصولا کوچکتر از معبر سنگ بود و استفاده از نیروی ارشمیدس ، نیروی موئین ، نیروی هیدرودینامیکی ، تراوایی موثر و در صد اشباع آب سنگ مخزن به بخش بالاتر مخزن انتقال پیدا می‌کند. حرکت صعودی هیدروکربور در مخزن منوط به جابجایی دیگر ملکولهای هیدروکربور بوده با این که بوسیله جریان آب صورت می‌گیرد.
ورود هیدروکربور به مخزن تداوم حرکت صعودی آن را تامین می‌کند. نفت و گاز شناور در آب با استفاده از نیروهای ارشمیدس و هیدرودینامیکی به سمت قله تاقدیس حرکت می‌کند. تمرکز نفت و گاز در قله تاقدیس مقاومت آن دو را در مقابل جریان افزایش می‌دهد. آب به ناچار در جهت شیب جریان به حرکت خود ادامه می‌دهد. حضور جریان قوی آب و وجود اختلاف فشار ، سبب کج شدگی سطح آب و نفت می‌شود. تداوم فشار هیدرودینامیکی ممکن است باعث جدایش مخازن از یکدیگر شده و تغییر کلی در تعادل مخزن را ایجاد کند. مخزن در شرایطی تشکیل می‌شود که نفت و گاز در جهت مخالف نیروی هیدرودینامیکی به طرف بالا حرکت کرده و در ناحیه رخساره‌ای ، نیروی هیدرودینامیکی و نیروی موئین بر نیروی ارشمیدس غلبه کند. بطور طبیعی در ناحیه تغییر رخساره‌ای مقدار تخلخل و تراوایی سنگ به سمت بالا کاهش یافته است


تعداد صفحات : 91 | فرمت فایل : WORD

بلافاصله بعد از پرداخت لینک دانلود فعال می شود